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Algorithms & Data Structures Exercise sheet 5 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 31 October 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 5.1 Heapsort (1 point).

Given the array [0, 7, 2, 8, 4, 6, 3, 1], we want to sort it in ascending order using Heapsort.

(a) Draw the tree interpretation of the array as a heap, before any call of RestoreHeapCondition.

(b) In the lecture you have learned a method to construct a heap from an unsorted array (see also pages
35–36 in the script). Draw the resulting max heap if this method is applied to the above array.

(c) Sort the above array in ascending order with heapsort, beginning with the heap that you obtained
in (b). Draw the array a�er each intermediate step in which a key is moved to its �nal position.

Exercise 5.2 Sorting algorithms.

Below you see four sequences of snapshots, each obtained in consecutive steps of the execution of
one of the following algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and
BubbleSort. For each sequence, write down the corresponding algorithm.

3 6 5 1 2 4 8 7
3 6 5 1 2 4 8 7
3 5 6 1 2 4 8 7

3 6 5 1 2 4 8 7
3 5 1 2 4 6 7 8
3 1 2 4 5 6 7 8

3 6 5 1 2 4 8 7
3 6 1 5 2 4 7 8
1 3 5 6 2 4 7 8

3 6 5 1 2 4 8 7
1 6 5 3 2 4 8 7
1 2 5 3 6 4 8 7

Exercise 5.3 Counting function calls in recursive functions (1 point).

For each of the following functions g, h, and k, provide an asymptotic bound in big-O notation on the
number of calls to f as a function of n. You can assume that n is a power of two.



Algorithm 1
(a) function g(n)

i← 1
while i < n do

f()
i← i+ 2

g(n/2)
g(n/2)
g(n/2)

Algorithm 2
(b) function h(n)

i← 1
while i < n do

f()
i← i+ 1

k(n)
k(n)

function k(n)
i← 2
while i < n do

f()
i← i2

h(n/2)

Exercise 5.4 Bubble sort invariant.

Consider the pseudocode of the bubble sort algorithm on an integer array A[1, . . . , n]:

Algorithm 3 BubbleSort(A)

for 1 ≤ i ≤ n do
for 1 ≤ j ≤ n− i do

if A[j] > A[j + 1] then
t← A[j]
A[j]← A[j + 1]
A[j + 1]← t

return A

(a) Formulate an invariant INV(i) that holds at the end of the i-th iteration of the outer for-loop.

(b) Using the invariant from part (a), prove the correctness of the algorithm. Speci�cally, prove the
following three assertions:

(1) INV(1) holds.

(2) If INV(i) holds, then INV(i+ 1) holds (for all 1 ≤ i < n).

(3) INV(n) implies that BubbleSort(A) correctly sorts the array A.
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Exercise 5.5 Guessing a pair of numbers (1 point).

Alice and Bob play the following game:

• Alice selects two integers 1 ≤ a, b ≤ 1000, which she keeps secret

• �en, Alice and Bob repeat the following:

– Bob chooses two integers (a′, b′)

– If a = a′ and b = b′, Bob wins

– If a > a′ and b > b′, Alice tells Bob ‘high!’

– If a < a′ and b < b′, Alice tells Bob ‘low!’

– Otherwise, Alice does not give any clue to Bob

Bob claims that he has a strategy to win this game in 12 a�empts at most.

Prove that such a strategy cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of Alice’s
answers, while each leaf corresponds to a win for Bob.

Hint: A�er de�ning the decision tree, you can consider the sequence k0 = 1, kn+1 = 3kn + 1, and prove
that kn = 3n+1−1

2 . �e number of leaves in the decision tree of level n should be related kn.
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